
generic-template
Release 0.0.0

Kyle Finley

Sep 02, 2022

DOCUMENTATION

1 Example Page 3

2 API Docs 5
2.1 generic_template package . 5

3 Branching Strategy 7
3.1 Master Branch . 7
3.2 Feature Branches . 7

4 Documentation Style Guide 9
4.1 Docstrings . 9
4.2 reStructuredText Formatting . 9

5 Getting Started 11
5.1 Local Development Environment . 11

Python Module Index 13

Index 15

i

ii

generic-template, Release 0.0.0

Generic project template to go from zero to developing in seconds.

DOCUMENTATION 1

generic-template, Release 0.0.0

2 DOCUMENTATION

CHAPTER

ONE

EXAMPLE PAGE

Plain text with some inline code.

quote block

1 """Showcase custom pygments style."""
2 # this is just an example
3 import boto3
4

5 client = boto3.client('ec2')
6 print('client.describe_instances')
7 print('test\ntest')
8

9 def function(**kwarg):
10 """placeholder."""
11

12 class Test:
13 """placeholder."""
14

15 def __init__(self):
16 """placeholder."""
17 pass

Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
body row 3 Cells may span rows. • Cells

• contain
• blocks.body row 4

Note: This is a note.

Important: This is important.

Warning: This is a warning.

3

generic-template, Release 0.0.0

Danger: This is dangerous.

1. list item

• another list

4 Chapter 1. Example Page

CHAPTER

TWO

API DOCS

2.1 generic_template package

Blank file for Python transversal.

This can be deleted or renamed to store the source code of your project.

5

generic-template, Release 0.0.0

6 Chapter 2. API Docs

CHAPTER

THREE

BRANCHING STRATEGY

3.1 Master Branch

The default branch of this project is master.

This branch can also be thought of as the latest branch in that it contains all the latest changes. It can also be through
of as the development branch in that it should be an exact match for what is currently deployed to a development and/or
test environment where applicable. All branches should be based off of this branch and should be merged into this
branch when a PR has been approved.

The contents of this branch should be continuously deployed to a development and/or test environment where applicable.

Releases are created from this branch by creating a tag. The tag should be in the format v${MAJOR}.${MINOR}.
${PATH} following SemVer. The tagged release should be deployed to a production environment where applicable.

3.2 Feature Branches

A feature branch is a branch where one or more developers are actively developing a single change. This change can
be a new feature/functionality, bug fix/patch, documentation update, or maintenance task.

A feature branch must be based off of the Master Branch and must be merged into the Master Branch when complete.
Changes to the Master Branch should be integrated daily.

A feature branch can be deployed to a development environment where applicable.

3.2.1 Feature Branch Naming

When creating a feature branch, it must be named in a specific way for GitHub Actions to handle it correctly. The
naming format is ${PREFIX}/${DESCRIPTION_OF_CHANGE}.

Prefixes

bugfix | fix | hotfix
The branch contains a fix for a big.

feature | feat
The branch contains a new feature or enhancement to an existing feature.

docs | documentation
The branch only contains updates to documentation.

7

https://semver.org/

generic-template, Release 0.0.0

chore | maintain | maint | maintenance
The branch does not contain changes to the project itself to is aimed at maintaining the repo, CI/CD,
or testing infrastructure. (e.g. README, GitHub action, integration test infrastructure)

release
Reserved for maintainers to prepare for the release of a new version.

8 Chapter 3. Branching Strategy

CHAPTER

FOUR

DOCUMENTATION STYLE GUIDE

Style guides to follow when writing documentation for this project.

4.1 Docstrings

In general, this project loosely follows the Google Python Style Guide for Comments and Docstrings.

We use the napoleon extension for Sphinx to parse docstrings. Napoleon provides an Example Google Style Python
Docstring that can be referenced.

4.2 reStructuredText Formatting

In general, this project loosely follows the Python Style Guide for documentation.

4.2.1 reStructuredText Whitespace

All reST files use an indentation of 2 spaces; no tabs are allowed. There is no maximum line length but 80 characters
is the recommended line length for normal text. It is preferred to only break a line at the end of a sentence.

Code example bodies should use normal indentation based on the convention of the language.

Make generous use of blank lines where applicable; they help group things together.

4.2.2 reStructuredText Sections

Section headers are created by underlining (and optionally overlining) the section title with a punctuation character, at
least as long as the text.

1. # with overline, for h1 (generally only one per file, at the top of the file)

2. * with overline, for h2

3. =, for h3

4. -, for h4

5. ^, for h5

6. ", for h6

h1 and h2 should have two or more blank lines separating them from sections with headings of the same level or higher.

A rubric directive can be used to create a non-indexed heading.

9

http://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://devguide.python.org/documenting/#style-guide

generic-template, Release 0.0.0

Example

#########
Heading 1
#########

Heading 2

Heading 3
=========

Heading 4

Heading 5
^^^^^^^^^

Heading 6
"""""""""

.. rubric:: Non-indexed Heading

Heading 2

Heading 3
=========

10 Chapter 4. Documentation Style Guide

CHAPTER

FIVE

GETTING STARTED

Before getting started, fork this repo and clone your fork.

5.1 Local Development Environment

Setting up a workstation of development of this project.

5.1.1 Prerequisites

Some of the listed prerequisites are recommended but not required.

• Make (GNU recommended) for simplified actions

– brew install make on macOS

– sudo apt install make or sudo apt install build-essential or Ubuntu/Debian

– winget install -e --id GnuWin32.Make on Windows

• npm for type checking & spell check (recommended to use nvm to install)

• poetry for Python virtual environments

• (recommended) direnv for setting environment variables (POSIX only)

• (recommended) nvm to install and manage different versions of node (POSIX only)

– see nvm-windows for Windows support

• (recommended) pyenv to install and manage different versions of Python (POSIX Only)

– see pyenv-win for Windows support

• (recommended) Visual Studio Code for standardized IDE settings

11

https://help.github.com/en/github/getting-started-with-github/fork-a-repo
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://www.gnu.org/software/make/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://python-poetry.org/
https://direnv.net/
https://github.com/nvm-sh/nvm
https://github.com/coreybutler/nvm-windows
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://code.visualstudio.com/

generic-template, Release 0.0.0

5.1.2 Setup

1. Clone the repo or your fork of this repo.

2. Change directory into the cloned directory.

3. Run make setup.

4. Start developing.

By running make setup, the following will happen:

1. poetry is used to setup a Python virtual environment.

2. pre-commit is configured from the virtual environment to run basic checks and formatting when a commit is
made. These checks can be run manually using make run-pre-commit.

3. node dependencies are installed.

12 Chapter 5. Getting Started

https://pre-commit.com/

PYTHON MODULE INDEX

g
generic_template, 5

13

generic-template, Release 0.0.0

14 Python Module Index

INDEX

G
generic_template

module, 5

M
module
generic_template, 5

15

	Example Page
	API Docs
	generic_template package

	Branching Strategy
	Master Branch
	Feature Branches
	Feature Branch Naming

	Documentation Style Guide
	Docstrings
	reStructuredText Formatting
	reStructuredText Whitespace
	reStructuredText Sections

	Getting Started
	Local Development Environment
	Prerequisites
	Setup

	Python Module Index
	Index

